首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5596篇
  免费   441篇
  国内免费   5篇
  2023年   23篇
  2022年   22篇
  2021年   134篇
  2020年   94篇
  2019年   128篇
  2018年   196篇
  2017年   178篇
  2016年   245篇
  2015年   349篇
  2014年   357篇
  2013年   409篇
  2012年   510篇
  2011年   484篇
  2010年   269篇
  2009年   253篇
  2008年   367篇
  2007年   331篇
  2006年   249篇
  2005年   247篇
  2004年   287篇
  2003年   197篇
  2002年   168篇
  2001年   82篇
  2000年   90篇
  1999年   61篇
  1998年   41篇
  1997年   20篇
  1996年   23篇
  1995年   22篇
  1994年   18篇
  1993年   10篇
  1992年   23篇
  1991年   19篇
  1990年   14篇
  1989年   12篇
  1988年   5篇
  1987年   8篇
  1986年   8篇
  1985年   4篇
  1984年   4篇
  1983年   7篇
  1979年   7篇
  1977年   3篇
  1976年   6篇
  1975年   6篇
  1974年   7篇
  1971年   6篇
  1970年   3篇
  1969年   6篇
  1968年   8篇
排序方式: 共有6042条查询结果,搜索用时 140 毫秒
991.
The objective of this study was to examine the effect of cytochalasin B (CB) and/or demecolcine (Dc) on the remodeling of donor nuclei, nuclear ploidy, and development of somatic cell nuclear transfer (SCNT) and parthenogenetic (PA) pig embryos. SCNT and PA oocytes were either untreated (control), or treated with CB, Dc, or both CB and Dc after electric activation, and then cultured or transferred to surrogates. In SCNT, blastocyst formation was higher after treatment with CB and/or Dc (26–28%) than in the controls (16%). The number of oocytes that formed a single pronucleus (PN) was higher after treatment with Dc (86%) and CB + Dc (86%) than under control conditions (44%) or after treatment with CB (63%). In PA, blastocyst formation was higher after CB treatment (47%) than under control conditions (28%), while the formation of a single PN was higher after treatment with Dc (88%) and CB + Dc (84%) compared to controls (34%). The rate of formation of diploid embryos was higher after treatment with Dc and CB + Dc than under control conditions. Dc treatment resulted in a farrowing rate of 50% with 1.1% production efficiency, while controls showed a farrowing rate of 37.5% and a production efficiency of 0.7%. The results of our study demonstrate that post‐activation treatment with Dc improves preimplantation development and supports normal in vivo development of SCNT pig embryos, probably because Dc induces formation of a single PN and this leads to normal nuclear ploidy. Mol. Reprod. Dev. 76: 611–619, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   
992.
The aim of this study was to investigate whether roscovitine (the cyclin-dependent kinase 2 inhibitor) effectively induces synchronization of the donor cell cycle at G0/G1 and to examine the effect of donor cell cycle synchronization protocols on canine somatic cell nucleus transfer. Canine fibroblasts were obtained from skin biopsy cultures taken from a 7-yr-old retriever. The donor cell cycle was synchronized either by culturing cells to reach confluency or by treating cells with 15 μg/mL roscovitine for 24 h. Cell cycle stages and apoptosis were analyzed by flow cytometry. After synchronization of the donor cell cycle, cells were placed with enucleated in vivo-matured dog oocytes, fused by electric stimulation, activated, and transferred into 18 naturally estrus-synchronized surrogates. There was no significant difference in cell cycle synchronization and apoptosis rates between the confluent and roscovitine groups. After transfer of reconstructed embryos, pregnancy was detected in three of nine surrogates that received cloned embryos reconstructed with roscovitine-treated cells, whereas only one of nine surrogates was pregnant after transfer of cloned embryos reconstructed with confluent cells. One pregnant female from the confluent cell group delivered one live and one dead pup, but the live one died within 5 days after birth. Three pregnant females from the roscovitine-treated cell group delivered eight live pups and one dead pup, and one of eight live pups died within 6 days after birth. In conclusion, the current results demonstrated that reconstructing embryos with roscovitine-treated cells resulted in increased efficiency of canine somatic cell nucleus transfer.  相似文献   
993.
Embryonic stem cells are envisioned as a viable source of pluripotent cells for use in regenerative medicine applications when donor tissue is not available. However, most current harvest techniques for embryonic stem cells require the destruction of embryos, which has led to significant political and ethical limitations on their usage. Parthenogenesis, the process by which an egg can develop into an embryo in the absence of sperm, may be a potential source of embryonic stem cells that may avoid some of the political and ethical concerns surrounding embryonic stem cells. Here we provide the technical aspects of embryonic stem cell isolation and expansion from the parthenogenetic activation of oocytes. These cells were characterized for their stem-cell properties. In addition, these cells were induced to differentiate to the myogenic, osteogenic, adipogenic, and endothelial lineages, and were able to form muscle-like and bony-like tissue in vivo. Furthermore, parthenogenetic stem cells were able to integrate into injured muscle tissue. Together, these results demonstrate that parthenogenetic stem cells can be successfully isolated and utilized for various tissue engineering applications.  相似文献   
994.
995.
Bacteria and fungi are thought to degrade cellulose through the activity of either a complexed or a noncomplexed cellulolytic system composed of endoglucanases and cellobiohydrolases. The marine bacterium Saccharophagus degradans 2-40 produces a multicomponent cellulolytic system that is unusual in its abundance of GH5-containing endoglucanases. Secreted enzymes of this bacterium release high levels of cellobiose from cellulosic materials. Through cloning and purification, the predicted biochemical activities of the one annotated cellobiohydrolase Cel6A and the GH5-containing endoglucanases were evaluated. Cel6A was shown to be a classic endoglucanase, but Cel5H showed significantly higher activity on several types of cellulose, was the highest expressed, and processively released cellobiose from cellulosic substrates. Cel5G, Cel5H, and Cel5J were found to be members of a separate phylogenetic clade and were all shown to be processive. The processive endoglucanases are functionally equivalent to the endoglucanases and cellobiohydrolases required for other cellulolytic systems, thus providing a cellobiohydrolase-independent mechanism for this bacterium to convert cellulose to glucose.The microbial degradation of cellulose is of interest due to applications in the sugar-dependent production of alternative biofuels (25). There are well-characterized cellulolytic systems of bacteria and fungi that employ multiple endo-acting glucanases and exo-acting cellobiohydrolases in the degradation of cellulose (12). For example, the noncomplexed cellulase system of the wood soft rot fungus Hypocrea jecorina (anamorph Trichoderma reesei), the source for most commercially available cellulase preparations, produces up to eight secreted β-1,4-endoglucanases (Cel5A, Cel5B, Cel7B, Cel12A, Cel45A, Cel61A, Cel61B, and Cel61C), two cellobiohydrolases (Cel6A and Cel7A), and several β-glucosidases (e.g., Bgl3A) (21). Cellobiohydrolases are critical to the function of these systems, as, for example, Cel7A comprises in excess of 50% of the cellulases secreted by this organism (11). Another well-characterized noncomplexed cellulase system is found in Thermobifida fusca, a filamentous soil bacterium that is a major degrader of organic material found in compost piles (32). This bacterium also secretes several endoglucanases and end-specific cellobiohydrolases to degrade cellulose (32). An alternative mechanism for degradation of cellulose is found in microorganisms producing complexed cellulolytic systems, such as those found in cellulolytic clostridia. In these microorganisms, several β-1,4-endoglucanases and cellobiohydrolases assemble on surface-associated scaffoldin polypeptides to form cellulose-degrading multiprotein complexes known as cellulosomes (2, 6). The unifying theme in both complexed and noncomplexed systems is the importance of cellobiohydrolases in converting cellulose and cellodextrins to soluble cellobiose.Recently, a complete cellulolytic system was reported to occur in the marine bacterium Saccharophagus degradans 2-40 (28, 31). This bacterium is capable of growth on both crystalline and noncrystalline celluloses as sole carbon sources and produces multiple glucanases that can be detected in zymograms of cell lysates (28). The genome sequence of this bacterium predicts that the cellulolytic system of this bacterium consists of 10 GH5-containing β-1,4-endoglucanases (Cel5A, Cel5B, Cel5C, Cel5D, Cel5E, Cel5F, Cel5G, Cel5H, Cel5I, and Cel5J), two GH9 β-1,4-endoglucanases (Cel9A and Cel9B), one cellobiohydrolase (Cel6A), five β-glucosidases (Bgl1A, Bgl1B, Bgl3C, Ced3A, and Ced3B), and a cellobiose phosphorylase (Cep94A) (28, 31). The apparent absence of a homolog to a scaffoldin in the genome sequence and to dockerin-like domains in the proposed glucanases suggests that this bacterium produces a noncomplexed cellulolytic system. Two unusual features of this cellulolytic system are the large number of GH5 endoglucanases and the presence of only one annotated cellobiohydrolase, Cel6A (28, 31). The apparent deficiency of cellobiohydrolases in this system raised the question as to the mechanism by which this bacterium degrades cellulose.To understand the mechanism for degradation of cellulose, the biochemical activities for the predicted cellobiohydrolase Cel6A and each of the GH5 glucanases predicted for the S. degradans cellulolytic system were evaluated. Cel6A exhibited properties of a classic endoglucanase, but three of the originally annotated endoglucanases, Cel5G, Cel5H, and Cel5J, were shown to be processive, forming cellobiose as the end product. Processive endoglucanases substitute for cellobiohydrolases in this system to play a major role in the degradation of cellulose.  相似文献   
996.
997.
The mechanisms by which mutant variants of Cu/Zn-superoxide dismutase (SOD1) cause familial amyotrophic lateral sclerosis are not clearly understood. Evidence to date suggests that altered conformations of amyotrophic lateral sclerosis mutant SOD1s trigger perturbations of cellular homeostasis that ultimately cause motor neuron degeneration. In this study we correlated the metal contents and disulfide bond status of purified wild-type (WT) and mutant SOD1 proteins to changes in electrophoretic mobility and surface hydrophobicity as detected by 1-anilinonaphthalene-8-sulfonic acid (ANS) fluorescence. As-isolated WT and mutant SOD1s were copper-deficient and exhibited mobilities that correlated with their expected negative charge. However, upon disulfide reduction and demetallation at physiological pH, both WT and mutant SOD1s underwent a conformational change that produced a slower mobility indicative of partial unfolding. Furthermore, although ANS did not bind appreciably to the WT holoenzyme, incubation of metal-deficient WT or mutant SOD1s with ANS increased the ANS fluorescence and shifted its peak toward shorter wavelengths. This increased interaction with ANS was greater for the mutant SOD1s and could be reversed by the addition of metal ions, especially Cu2+, even for SOD1 variants incapable of forming the disulfide bond. Overall, our findings support the notion that misfolding associated with metal deficiency may facilitate aberrant interactions of SOD1 with itself or with other cellular constituents and may thereby contribute to neuronal toxicity.The sequence of events by which more than 100 mutations in the gene encoding Cu/Zn-superoxide dismutase (SOD1)3 cause familial forms of amyotrophic lateral sclerosis (ALS) is unknown. Studies of purified SOD1 proteins and cellular or rodent models of SOD1-linked ALS suggest that impaired metal ion binding or misfolding of mutant SOD1 proteins in the cellular environment may be related to their toxicity (110). Available evidence suggests that partially unfolded mutant SOD1 species could contribute to motor neuron death by promoting abnormal interactions that produce cellular dysfunction (1116).In previous studies we characterized physicochemical properties of 14 different biologically metallated ALS SOD1 mutants (17) and demonstrated altered thermal stabilities of these mutants compared with wild-type (WT) SOD1 (18). These “as-isolated” SOD1 proteins, which contain variable amounts of copper and zinc, were broadly grouped into two classes based on their ability to incorporate and retain metal ions with high affinity. WT-like SOD1 mutants retain the ability to bind copper and zinc ions and exhibit dismutase activity similar to the normal enzyme, whereas metal binding region (MBR) mutants are significantly deficient in copper and/or zinc (17, 19). We also observed that ALS-associated SOD1 mutants were more susceptible than the WT enzyme to reduction of the intrasubunit disulfide bond between Cys-57 and Cys-146 (20). The significance of these results is that even WT-like mutants, which exhibit a nearly normal backbone structure (2123), may be vulnerable to destabilizing influences in vivo. Our group and others subsequently showed that the mutant SOD1 proteins share a susceptibility to increased hydrophobicity under conditions that reduce disulfide bonds and/or chelate metal ions (5) and that similar hydrophobic species exist in tissue lysates from mutant SOD1 transgenic mice (46). One consequence of such hydrophobic exposure could be the facilitation of abnormal interactions between the mutant enzymes and other cellular constituents (e.g. chaperones, mitochondrial components, or other targets), which might influence pathways leading to motor neuron death (15, 16, 2427).Accumulating evidence suggests that metal deficiency of SOD1 is an important factor that can influence SOD1 aggregation or neurotoxicity (4, 2833), but the metal-deficient states of SOD1 that are most relevant to ALS remain unclear. Zinc-deficient, copper-replete SOD1 species, which can be produced in vitro by adding copper to SOD1 that has been stripped of its metal ions at acidic pH, were shown to be toxic to motor neurons in culture (28). However, it has not been shown that zinc-deficient, copper-replete SOD1 is produced in vivo as a consequence of ALS mutations, and loading of copper into SOD1 by the copper chaperone for SOD1 (CCS) is not required for toxicity (34, 35). Furthermore, the MBR mutants have a disrupted copper site and have been found to be severely deficient in both zinc and copper (17, 30), yet expression of these SOD1s still produces motor neuron disease (1, 2, 30, 34, 36, 37).When recombinant human SOD1 was overexpressed in insect cells, we instead observed zinc-replete but copper-deficient species for most WT-like mutants, probably because the capacity of the copper-loading mechanism was exceeded (17). These preparations indicate that zinc can be efficiently incorporated into many WT-like mutants in vivo, and much of it is retained after purification. Furthermore, these copper-deficient biologically metallated proteins may be useful reagents to assess the influence of copper binding upon other properties of SOD1 mutants that may be relevant to their neurotoxicity.We previously observed that reduction of the Cys-57—Cys-146 disulfide bond facilitates the ability of metal chelators to alter the electrophoretic mobility and to increase the hydrophobicity of SOD1 mutants (5). This is consistent with the known properties of this linkage to stabilize the dimeric interface, to orient Arg-143 via a hydrogen bond from the carbonyl oxygen of Cys-57 to Arg-143-NH2, and to prevent metal ion loss (3840). However, it remains unclear whether the Cys-57—Cys-146 bond is required to prevent abnormal SOD1 hydrophobic exposure or whether the aberrant conformational change primarily results from metal ion loss. Ablation of the disulfide bond by the experimental (non-ALS) mutants C57S and C146S provides useful reagents to test the relative influence of the disulfide bond and copper binding upon SOD1 properties.In this study we sought to correlate the consequences of copper deficiency, copper and zinc deficiency, and disulfide reduction upon the hydrodynamic behavior and surface hydrophobicity of WT and representative mutant SOD1 enzymes (Fig. 1A). We quantitated the metal contents of as-isolated SOD1 proteins, detected changes in conformation or metal occupancy using native PAGE to assess their electrophoretic mobility, a measure of global conformational change, and correlated these changes to hydrophobic exposure using 1-anilinonaphthalene-8-sulfonic acid (ANS), which is very sensitive to local conformational changes. ANS is a small amphipathic dye (Fig. 1B) that has been used as a sensitive probe to detect hydrophobic pockets on protein surfaces (4144). Free ANS exhibits only weak fluorescence that is maximal near 520 nm, but when ANS binds to a hydrophobic site in a partially or fully folded protein, the fluorescence peak increases in amplitude and shifts to a shorter wavelength (42). ANS also has an anionic sulfonate group that can interact with cationic groups (e.g. Arg or Lys residues) through ion-pair formation which may be further strengthened by hydrophobic interactions (4346).Open in a separate windowFIGURE 1.A, WT SOD1 structure showing the position of the C57-C146 intrasubunit disulfide bond (S–S, yellow), bound copper and zinc ions, and ALS mutant residues. The residues altered in A4V, G85R, G93A, D124V, and S134N SOD1s are indicated as green spheres. The backbone of the β-barrel core and the loops is shown in a rainbow color, from blue at the amino terminus to red at the carboxyl terminus. The figure was generated using PyMOL (84) and PDB entry 1HL5 (22). B, chemical structure of ANS fluorophore.To evaluate further the importance of metal ion binding, we measured spectral changes related to the binding of cobalt and copper to the same SOD1 proteins. We observed that as-isolated WT-like mutants containing zinc could interact with copper ions to produce an electrophoretic mobility and decreased hydrophobicity resembling that of the fully metalated holo-WT SOD1. In contrast, we saw no evidence for copper binding to MBR mutants in a manner that alters their hydrodynamic properties or their hydrophobicity. Our data suggest that binding of both copper and zinc are important determinants of SOD1 conformation and that perturbation of such binding may be relevant to the ALS disease process.  相似文献   
998.
999.
One of the most important factors determining the success of the development of cloned embryos is the cell cycle stage of the donor cells. We investigated the effects of serum starvation, culturing to confluence and roscovitine treatment on the cell cycle synchronization of goldfish caudal fin-derived fibroblasts by flow cytometric analysis. The results show that culturing the cells to confluence (85.5%) and roscovitine treatment (82.71%) yield a significantly higher percentage of cells arrested in the G0/G1 (P < 0.05) phase than serum starvation (62.85%). Different concentrations of roscovitine (5, 10, or 15 μM) induce cell cycle arrest at the G0/G1 phase.  相似文献   
1000.
Vibrio anguillarum ghosts (VAG) were generated, for the first time, using a conjugation vector containing a ghost bacteria inducing cassette, pRK-λPR-cI-Elysis, in which the expression of PhiX174 lysis gene E was controlled by the P R /cI regulatory system of lambda phage. By scanning electron microscopy, holes ranging 80–200 nm in diameter were observed in the VAG. To avoid the presence of bacterial genomic DNA and an antibiotic resistance gene in the final VAG product, we constructed a new dual vector, pRK-λPR-cI-E-SNA, containing the E-mediated lysis cassette and the staphylococcal nuclease A (SNA)-mediated DNA degradation cassette, and generated safety-enhanced VAG for use as a fish vaccine.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号